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Abstract

In this report, we discuss our implementation and
benchmarked results of a GPU based k-d tree con-
struction algorithm based on [1ll. Our implementation
achieves an average of 5.17x speedup over a reference
serial implementation. We discuss our implementation
approach, the data structures used, and analyze our
benchmarked performance.

I. Background

Ray tracing is a commonly used method to
render photo-realistic texture in graphics applications,
which heavily rely on a spatial data structure to
accelerate ray-primitive intersections. Among the
various space partitioning algorithms including grid,
octree, bounding volume hierarchies (BVH) and k-d
trees, k-d trees are widely used in many commercial
products. [2] Past work has shown that k-d tree built
from a surface area heuristic (SAH) has superior
performance over other criteria, but building a SAH
k-d tree is usually expensive [2], [3].

As CPU and GPU are evolving into incredibly
parallel computing units, it’s possible to have GPU
based parallel k-d tree construction algorithms that
can be applied in real-time ray tracing. In a sequential
SAH k-d tree construction, the sequential algorithm
builds a k-d tree in a depth first order by evaluating
the SAH cost and accordingly splitting the nodes. To
determine the best partition, it computes SAH costs
for all possible partition planes [2]. In a sequential
version, this is generally done by sweeping the sorted
list. But in a parallel version, this can be achieved by
data-parallel primitives scan or segment scan. After
finding the best splitting planes, we subdivide the
nodes and distribute the associated triangles into
their child nodes. Specifically, we split triangles that
cross the splitting plane and shrink their AABBs (axis
aligned bounding box). This computation benefits
from parallel sorting.

II. k-d tree

A. Algorithm overview

k-d trees are well established space-partitioning
data structure for organizing points in a k-
dimensional space. As an acceleration structure,
it's widely used in various graphics applications,
including ray-triangle intersection tests in ray tracing,
nearest photo queries in photo mapping, and nearest
neighbor search in point cloud modeling and particle-
based fluid simulation [I]]. A k-d tree is essentially

a binary tree in which every leaf node stores the
following information: the start and end index of
the triangles it contains in the sorted triangle vector,
the number of triangles, and the bounding box of
all triangle’s AABB. In this report, we focus on a
real-time parallel k-d tree construction algorithm for
graphics application.

B. Serial Implementation

Given mesh objects consisted of triangles meshes,
our algorithm takes in an array of triangle meshes
and outputs a binary tree where each child leaf node
contains information mentioned above. Our k-d tree
construction scheme follows a conventional algorithm
[7] which builds a k-d tree in a greedy, top down
manner by recursively splitting the current node into
two sub nodes as follows:

1) Evaluate the SAH cost for all splitting plane
candidates in k dimensional space.

2) Pick the optimal candidate with the least cost
and split the node into two child nodes.

3) Sort triangles in the node and distribute them
to the child nodes [1].

The SAH cost function is defined as

CL)AL(x)  Cr(x)AR(x) )

A A
where Cy is the constant cost of traversing the node
itself, Cr.(x) is the cost of the left child given a split
position x, and Cg(x) is the cost of the right child
given the same split position. Az (x) and Agr(x) are
the surface areas of the left and right child. A is
defined as the surface area of the node. Note that
Cr(x) and Cgr(x) can only be evaluated after the entire
tree is built. Rather than seeking a globally optimal
solution, existing algorithms use a locally greedy
approximation which treats the child nodes as leaf
nodes [1]. In this scenario, Cr(x) and Cg(x) is the
same as number of primitives contained in left and
right node.

SAH(x) = Cs +

C. Computation Cost and Parallelization

The most expensive computation in the process
of constructing a k-d tree is to compute SAH cost
when finding the best partitioning plane. The optimal
sequential SAH k-d tree construction algorithm as
mentioned above performs linear-time sorted-order
coordinates sweep to compute the SAH to find the
bet partition plane. This achieves O(nlogn) efficiency
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Figure 1: Parallel k-d tree patterns [3].

because it takes three sweeps over each of the O(n)
splitting candidates for each of the O(logn) level of
the k-d tree. [9]

We first take a look at the parallel k-d tree
patterns as shown in Figure 1. For nodes at top levels
of the tree where the number of nodes is less than
that of the cores, multiple cores cooperate and lead to
a breadth-first stream process that organizes triangles
into nodes at the current level. After the number of
nodes exceed the number of cores, each subnode tree
can be processed by each core separately. Various
past work have addressed the problem of parallel k-d
tree construction. Some work uses a single thread
to create the top levels of the tree until each node
can be mapped to each core in a multi-core system.
[9] However, this can lead to load imbalance since
at top levels of the tree, each node may have a large
difference in the number of triangles it contains. To
address load imbalance, Shevstov el al. [10] proposed
a shared memory architecture with multi-core CPUs.
The algorithm first divides space into several balanced
sub-regions and then builds sub-trees in each region
in parallel and DFS order. However, in this report,
we seek for a parallel model with GPU. The above
algorithms do not map well into GPU architecture
because number of threads in GPU is much greater
than that in CPU. The other problem with Shevstov’s
algorithm is that it degrades the construction quality
when rendering since it does not follow the SAH
heuristic.

To maximally exploit the GPU’s streaming archi-
tecture for parallelizing k-d tree construction while
maintaining relatively high construction resolution,
we adapted algorithms proposed by Zhou et al. [1].
We first build the tree in a BFS order. By follow-
ing a BFS construction, we take advantages of the
parallelism in GPU because the number of threads
doubles from the preceding step at each tree level.
To further exploit the large scale parallelism in GPU,
we parallelize over geometric primitives instead of
nodes at upper levels of the tree. This method is
more efficient since the number of nodes in upper
levels is relatively small. Moreover, the workload
may be imbalanced among nodes since the number

of primitives may differ significantly. To further
reduce computational cost for node splitting, we
set a threshold and distinguish nodes between large
and small nodes based on the number of triangles a
node contains [1]]. For large nodes at upper tree level,
we adopt two inexpensive cost estimation methods:
median splitting and "empty space maximizing"[8]
which will be explained later in details. For small
nodes near bottom of the tree, we want to have a more
exact evaluation of the cost to maintain relatively high
reconstruction resolution, and so we store geometric
primitives in nodes as bit masks and use bitwise
operations to evaluate costs and sort primitives.

D. Data Dependency

This algorithm is highly parallel across all levels
of the tree. In the upper level of the tree, since
we are parallelizing over primitives, each thread is
independent, so no inter-communication is required.
For small nodes, across nodes, there may be a global
read to the same triangle when the splitting plane
intersects a triangle, but no global write happens.

III. Implementation

Our algorithm follows multiple stages in the
construction of the tree. After initializing the root
node, the algorithm follows two processes; first, it
processes large nodes, and then it goes through and
processes the small nodes. After the large and small
node processes complete, we reorganize the result of
the earlier processes and compute the final tree. We
now describe each stage in greater detail.

A. Initialization

During initialization, we first convert the input
file into a triangle soup. For our implementation,
we decided to take .obj files as input for our 3D
representation, and we convert this into an array of
triangles. Using the array of triangles, we construct
the root node which we will split in later stages, and
compute the AABBs of every triangle in parallel on
the GPU. As mentioned in class, our array of triangles
(and most arrays in our implementation) follow the
structure of arrays principle, as it is more efficient to
hold a structure of arrays over an array of structures.

B. Large node stage

Next, once we have computed the AABBs of
every triangle, we then perform the large node stage.
This stage takes all large nodes (defined as all nodes
with > T triangles) and continuously reduces and
splits them until there are no more large nodes left
over multiple rounds. To perform this in an efficient
manner, we implemented a chunklist structure and a
multi-step reduction pass as described by Zhou et al.
that allows us to exploit parallelism [I]]. To start, we
first initialize the chunklist at the beginning of every
pass by separating triangles in every large node in
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Algorithm 1: Multi-step reduction pass

Algorithm 2: Large node stage

Function REDUCEPASS (
in: chunklist, operation op
out: list of reduced values red_vals)
begin
parallel for ¢ € chunklist do
| reduce in parallel over triangles in ¢
parallel for n € nodelist do
segmented reduce in parallel over
chunks that correspond to n
end

groups of size N. Using this structure, the goal of the
multi-step reduction pass (outlined in Algorithm 1)) is
to efficiently a reduction over all triangles in a node.
To do so, we first perform a reduction over every
chunk individually, as all triangles in a chunk are
guaranteed to be in the same node. Then, we perform
a segmented reduce on this output. As the name
implies, segmented reduce performs a reduction
over specified segments in the input sequence; for
our purposes, we segment by node, allowing us to
efficiently reduce triangles over a node. This multi-
step reduction pass is preferable to a bigger, single-
step segmented reduce as Sengupta et al. found that
a large segmented reduce is about 3x slower than
the multi-step reduction [4].

Now we discuss the overall large node stage. For
every pass, we are given an input of active large nodes
that we will split. As mentioned earlier, we first chunk
the list of triangles. Using the multi-step reduction
pass, we first reduce and compute the bounding box
for each node. To do so, we simply use the min and
max operators over each of the triangle’s AABBs to
compute a node’s bounding box. Next, we go over
each of the computed bounding boxes in parallel and
perform a pruning step. For each side of a node’s
bounding box, we check for empty space; if a side
has more than some ratio R, that is empty along
that axis, we cut off the empty space. After having
done that, we then split the node along the middle of
the longest axis. Using this split information, we sort
and separate the triangles from the node into the two
child nodes that are formed with this split, clipping
any triangles that are in both nodes. Finally, to finish,
we use the multi-step reduction pass to now count
the number of triangles in each node and we filter
out the nodes that fall under the large node threshold.
For this reduction pass, we simply add one for each
of the triangles we reduce over. An overview of this
stage is seen in Algorithm [2]

C. Small node stage

After the large node stage is complete, we now
process all of the small nodes. Unlike the large
stage, most of the parallelization here is done over
nodes. We note that because we limit the number
of triangles in a small node to 7, the workload per

Function PROCESSLARGE (
in: root_node, an initial node w/ all triangles
out: small_nodes, list of small nodes,
node_list, a list of list of large nodes)
begin
active_nodes «— [root_node]
new_nodes «— new list

while /active_nodes.empty() do
node_list.append(active_nodes)
chunk active_nodes into chunklist

// calculate boundaries
RepuUcePAss(chunklist, min, min_bound)
ReDpUCEPAss(chunklist, max, max_bound)

// split and separate triangles
parallel for n € active_nodes do
for sides of n do
if side has C, empty space do
| cut off empty space
split node into n¢, n, along median

add ng, n, to new_nodes
parallel for k e chunklist do

parallel for triangle ¢ € k do
place and clip ¢ into correct child
node ny, n,

// count triangles
RepUCEPASs(chunklist, +, num_triangles)
parallel for n € new_nodes do

if n.numTriangles < T do
new_nodes.remove(n)

small_nodes.add(n)
active_nodes = new_nodes
end

end

node is relatively the same. Next, we proceed in two
steps. First, we perform a preprocess step. In the
preprocess step, we construct all possible splitting
point candidates for each small node and compute
the triangle sets for both sides of the possible splitting
points in parallel. We perform this step to prepare for
the next step, where we compute the SAH for every
node and attempt to split. Similarly to the large node
step, we continuously operate over a list of active
nodes (which starts off as the list of all small nodes)
until no nodes are active. We define an active node as
one that has a splitting candidate p such that the SAH
is reduced. If we find that the SAH only increases
with any potential split, this means that the current
node should be a leaf.

As mentioned earlier in section 2.3, in order to
achieve the SAH computation efficiently, we employ
the use of bit masks and bitwise operations. At every
pass, we go over all active nodes in parallel. For
each active node, we take the bitset of the set of
triangles in this node. Next, we look at the small
root of this node. The small root is the uppermost
small node ancestor in the tree. We use this small
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Algorithm 3: Small node stage

Algorithm 4: The complete algorithm.

Function PROCESSSMALL (
in: small_nodes, a list of small nodes
out: node_list, a list of list of all nodes)
begin
active_nodes «— small_nodes
new_nodes «— new list

// preprocess
parallel for n € small_nodes do
n.splitList « all split candidates for »
parallel for s € n.splitList do
s.left < set on left of the split
s.right « set on right of the split

// compute the SAHs and split
while /active_nodes.empty() do
node_list.append(active_nodes)
parallel for n € active_nodes do
t « n.triangleSet
r « n.smallRoot
SAHy « |t
for valid s € r.splitList do
CL—|tn sleftl
Cr « |t N s.right|
compute areas Az, Ar
compute SAH; with equation (1)
Sopt < argmins SAH,
if SAH,,, > SAH, then
| nis aleaf node
else
split n with sopt
appending new nodes to new_nodes
sort triangles into new nodes
end

active_nodes = new_nodes
end

end

root and go over its precomputed splitting points.
For each of these splitting points, we know that we
also precomputed the triangle sets for both sides of
these splitting points. Using a bitwise AND, we can
then compute the triangle sets for the split of the
current active node using bitset of the triangles in
this node and the bitsets of the triangle sets that split
the small root. Using this triangle information and
an easily computable area calculation, we can easily
calculate the SAH of this split. From here, we can
minimize over all splitting points and evaluate the
minimal SAH, determining whether to split or not.
The overview of this stage is covered in Algorithm

D. Traversal

Finally, we compute a final preorder traversal. Zhou
et al. needed to compute the preorder traversal of the
k-d tree because their ray-tracer implementation was
stack-based, and thus required a specific ordering.
Although we did not implement their ray-tracer, we
decided to port over this preorder traversal as well
to get an accurate point of comparison with their

Function CoNsTRUCTKDTREE (
in: triangles, a list of all triangles
out: kd_tree, tree in preorder traversal)
begin
node_list < new list
small_nodes «— new list
root < new node(triangles)

ProcEssLARGE(root, small_nodes, node_list)
ProcessSMALL(small_nodes, node_list)

kd_tree « PREORDERTRAVERSAL(node_list)
end

data. We will not discuss the preorder traversal in
great detail; simply, their implementation performs
two passes. First, it performs a bottom-up phase
to compute the size of each subtree, allocates a
proper tree, then performs a top-down phase to
store pointers in a preorder format. This is done
by examining each level in the tree in parallel. We
note that the node_list that has been passed to both
PrOCESSLARGE and PROCESSSMALL keeps this dept
level information since we append full levels of nodes
to the list for each inner loop we perform in both
stages.

E. Overall algorithm and implementation detail

Using all the stages in the algorithm, our final
algorithm simply performs the stages in order, as
seen in Algorithm 4. For our implementation, we
built off Choi et al.’s C++ implementation of a parallel
CPU k-d tree construction algorithm. This code was
readily available on Choi’s Github, and was easily
modifiable for our purposes. Using this baseline, we
implemented the specific stages and processes using
CUDA as well as the thrust library for many of the
operations and helpful data structures. The thrust
library provides many of the crucial operations in
the multi-step reduction pass and also has helpful
data structures (primarily, the device_vector data
structure). As mentioned throughout the algorithm
description, there is a lot of possible parallelization in
the algorithm. Because nodes, triangles, and splits can
all be done in parallel, all stages of the algorithm lend
well to a CUDA implementation. For example, the
chunked data structure lends well to thread blocks,
as we can compute a reduce over thread blocks of
size N. This allows this algorithm to take advantage
of the GPU to compute k-d trees with great speed.

IV. Results
A. Test suite and methodology

For our test data, we decided to test on GHC ma-
chines with a serial and parallel CPU implementation
from Choi as well as our parallel implementation.
For the serial implementation, we tested using the
CPU, while we ran our parallel results with NVIDIA
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Figure 2: Images of the models in our test suite.

Model: Bunny Fairy Dragon Happy Angel
# Triangles 69k 172k 203k 293k 474k
Serial (ms) 73.8 177.0 216.4 317.6 538.5
Parallel (ms) 25.1 624 39.6 46.0 712

Speedup 2.95 2.85 5.55 6.9 7.58

Table I: K-D tree construction results for a serial im-
plementation compared to our GPU implementation

GeForce RTX 2080 GPUs. We measured performance
based on the K-D tree construction time, and we
tested the results on mesh models consisting of 69k
to 474k triangles. Due to time constraints, we did not
measure ray-traversal time for the two construction
results, so we could not measure frame rate and recon-
struction resolution for our parallel implementation.

B. Benchmark

We first compare our CUDA parallel K-D tree con-
struction time with single thread CPU construction
time. As shown in Table 1, we achieved a speed
up ranging from 2.85x to 7.59x. As the number
of triangles increases, the speedup of our parallel
implementation also increases. We do see that the
result of Fairy seems to be an outlier, as it has less
speedup than Bunny despite possessing more trian-
gles which should benefit from parallelization more.
We speculate that this is because the distribution
of geometric primitives in fairy are rather sparse.
Looking at Figure 2.b, we observed that Fairy is an
entire scene instead of an isolated object. This may
make the BFS streaming process during the large
node stage more time-consuming. We then plotted
K-D tree construction time vs. number of triangles
in the model for parallel implementation with data
for Fairy removed. As we see in Figure 3, We have
a near-linear relationship between the two variables.
This was expected because the increase in model
complexity and the file format lends to longer build
times simply because of the increase in the problem
size.

Model: Bunny Fairy Dragon Happy Angel
Init 0.51 0.55 0.63 0.71 0.76
Large Nodes 72.8 79.1 70.0 74.1 70.0
Small Nodes 21.9 15.4 20.8 23.3 221
Others 4.82 498 8.57 1.88 7.12

Table II: Instrumentation results of different compo-
nents in K-D tree construction

k-d tree build time (ms) vs. # of triangles

ke ree buld time (ms)

100000 200000 300000 400000

#of tiangles

Figure 3: Plot of K-D tree construction vs. number
of triangles in the model for parallel implementation

We also instrumented different components in our
k-d tree construction implementation as shown in
Table 2. We observed that nearly 70 —80% of our
construction time is denoted to large node process
despite the large parallelism we applied. Since we
already substituted expensive SAH evaluation with
inexpensive median splitting and "empty space max-
imizing", we speculate that the high cost comes from
the reduction step. Lastly, we believe that our GPU
implementation is more suitable for large k-d tree con-
structions than the multi-core CPU implementation.
To test our choice, we compared our GPU implemen-
tation with Choi’s in-place parallel algorithm running
on 8 threads. As seen in Table 3, the building time
is relatively the same for models with small number
of triangles. But as the number of triangles increases,
our GPU implementation has a much greater speedup
over the parallel CPU algorithms. We believe that the
overhead of the GPU implementation from launching
kernels, transfering memory, etc. is a big factor for
smaller models, resulting in negligible speedup for
Bunny and Fairy, whereas the speedup for larger
models is much better due to the complexity of the
models.

V. Reflection and future work

We decided to pick this particular implementation
of k-d tree construction because we believed it was
the right scope for us to implement for this project.
Originally, we decided to implement the work done
in [2] because we thought that the ideas in the paper
were more novel and seemed more interesting to
implement. However, because of both the COVID-
19 situation and the vague, unclear language of
the paper, we were unable to finish a complete
implementation and decided to implement [[1] instead.
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Model: Bunny Fairy Dragon Happy Angel
# Triangles 69k 172k 203k 293k 474k
CPU (ms) 26.8 70.1 93.5 148.6 318.5
GPU (ms) 25.1 62.4 39.6 46.0 712
Speedup 1.07 1.12 2.36 3.23 4.47

Table III: K-D tree construction results for a parallel
CPU implementation on 8 threads compared to our
GPU implementation

Because of these issues, we were also unable to also
complete the ray-tracer algorithm, which would have
allowed us to benchmark and test the frame rate and
reconstruction resolution. We wish that under better
circumstances, we would be able to implement and
test the ray-tracing algorithm as well.

In the future, we would like to incorporate the
ideas from [2] into our GPU implementation here.
Despite the unclear language of the paper, we believe
that it has some interesting ideas that we could
have ported over into this algorithm but could not
have a chance to do. For example, we think that the
parallel event sort is something that we could have
ported, but we did not successfully complete this
reach goal. Additionally, incorporating ideas of more
recent works would also be quite interesting to do
had the scope of this project been larger.

VI. Division of work

We both did equal amounts of work on this project.
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