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A Closed Loop between Microgeometry and BRDF for Wave Optics

ZIWEN YE, Carnegie Mellon University, USA

Given a material prototype whose visual appearance is determined by micro-
scale details of its surface geometry, it’s tempting to fabricate this appearance
in any arbitrary shape. In this report, we investigate a closed loop between
microgeometry in surface heightfields and the corresponding BRDFs for
wave optics. We presented both derivations of BRDF from microgeometry,
and vice versa using both geometric and wave optics methods.
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crofacet models, spatially-variant anisotropic BRDF
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1 INTRODUCTION
Novel materials fabricated in lab space are of small scales and

possess complex surface geometry. These properties make them
difficult to measure and simulate to produce realistic rendering
results.

Realistic Rendering of novel materials is important for car
industry. In car advertisements, they want to realistically recreate
metal paints on the cars to match with their own appearance in
real life. Being able to measure and render a material prototype
allows preview of their products. Another potential application is
for scientists to visualize their results in a virtual environment and
have better analysis for their work

An established surface reflectance model is based on micro-
facet theory which states that the overall BRDF of the object can be
modeled based on an arrangement of infinitesimally small facets.

But The way a surface reflects light is represented by its bidi-
rectional reflectance distribution function (BRDF). The shape of
a microfacet BRDF is primarily determined by the distribution of
micro-scale surface normals, which is represented as a normal dis-
tribution function (NDF). Traditionally, simple distributions based
on statistical assumptions about the surface, such as the Beckmann
distribution, are used so that the parameters can be obtained by
fitting to a relatively sparse set of BRDF measurements.[Walter et al.
2007; Zhao et al. 2014]

One approach in the past captured normal distribution by mea-
suring microscopic surface topography. A profilometer that uses
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white-light interferometry through a microscope was used to mea-
sure the height fields, and measurements were done at high res-
olution regions at micron scales. With these measurements, they
predicted accurate BRDF from the geometric surface normals. This
method successfully captures BRDF information with easy setup
and little time, but their method only examined known metal ma-
terials such as stainless steel, aluminum, and copper.[Zhao et al.
2014]

The article explores both the realm of high resolution rendering
and geometry fabrication, which we hope to form a closed loop
between the two variables : surface microgeometry and BRDF. We
first discusses derivation of BRDFs frommeasured heightfields using
both geometric and wave optics methods. Alternatively, we discuss
fabrication of surface height fields from BRDFs usingmilling process.
The ultimate goal of this article is to acquire and fabricate accurate,
high resolution physical surfaces based on real measurements of
material prototype in micron-scale.

2 RELATED WORKS

2.1 Microfacet BRDF
Microfacet theory is a geometric optics model which represents a

material as an arrangement of infinitesimally small specular facets. It
has been shown to be efficient in reproducing the behavior of a wide
range of real materials.[Dupuy and Jakob 2018] The resulting BRDF
thus have three terms, the microfacet Normal Distribution Function,
a Fresnel term based on the material’s complex index of refraction,
and a shadow-masking term to ensure energy conservation. Out
of the three terms, the most important is NDF since it is used to
determine the pattern of reflected light. Many different parametric
forms have been proposed to account for NDF. Tomodel anisotropies
of materials, Ward [Ward 1992] applied the anisotropic Beckmann
distribution, which ignored the Fresnel and the shadowing masking
term for simplicity. Walter [Walter et al. 2007] introduced the GGX
distribution which is better suited to modelling spatial variations in
materials.

Microfacet theory assumes the diffraction effects can be ignored
using geometric optics. But such an assumption holds only when
micro-surfaces are locally flat compared to the wavelength. In reality,
material surfaces break this assumption. The above methods has
not addressed their limits to the actual microgeometry of surfaces.
Zhao [Zhao et al. 2014] measured surface geometry and developed a
modified NDF estimation in a geometric optics context to accurately
predict BRDFs for anisotropic materials.

2.2 Modeling Microgeometry
Zhao [Zhao et al. 2014] used X-ray computed tomography (CT)

to measure the 3D structure of a small area of the cloth and acquire
a volumetric model. They use multiple CT images to reconstruct
density and orientation fields, then use optical parameters of the vol-
umetric model to pattern match across the whole cloth to generate
highly realistic results. Dong [Dong et al. 2015] measured surface
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microgeometry of metals using a profilometer which is generally
found in photolithography and nanofabrication. Using a profilome-
ter allows rapid BRDF acquisition with both high spatial and angular
resolution, but it only predicts the first surface reflection for the
surfaces. CT imaging, though slow in speed, captures the full 3D vol-
umetric information and is suitable for complex, thick materials like
textiles. Yan [Yan et al. 2014] captures the true normal distributions
on a surface patch seen through a pixel.

2.3 Material Fabrication
Dong [Dong et al. 2010] presented a method for fabricating a

material volume with a desired BSSRDF(bidirectional subsurface
scattering reflectance distribution function). Optically thick materi-
als whose subsurface scattering behavior is captured by diffusion
approximation are stacked with varying thickness and composition
and reproduce a wide variety of heterogeneous BSSRDFs. Hašan
[Hašan et al. 2010] proposed a different pipeline process which
produces both homogeneous and heterogeneous composites with
a multi-material 3D printer instead of a milling machine and a 3D
printed color texture as proposed by Dong et al [2010] Rouiller
[Rouiller et al. 2013] uses analytic NDF as input to optimize a mi-
crogeometry that reproduces a normal distribution corresponds to
the desired NDF, allowing fabrication ofspatially varying BRDFs
(svBRDFs) on 3D models.

2.4 Fabricating Microgeometry
Weyrich [2009] proposed a system for manufacturing physical

surfaces given a user-specified BRDF using milling machines. The
derived surface height field has high angular resolution, but the
spatial resolution is limited. Levin et al. [2013]incorporated wave
optics into fabrication design, and fabricated spatially varying BRDF
using photolithogrphay, improving spatial resolution up to 220 dpi
(dots per inches). Alternatively, Schwartzburg et al [2014] presented
an algorithm for inverse caustic design by integrating adaptive
Voronoi discretization scheme. Their methods enabled high-contrast
target images.

3 METHODS
Our goal is to reproduce complex surface appearances in high spa-
tial resolution for material surfaces given information about height
fields. In addition, we hope to fabricate heightfields given existing
BRDFs, forming a closed loop between the two variables. Given the
limits of access to optical profilometer, we use prior height field data
to reconstruct BRDF based on the following methods. Using micro-
facet theory to predict normal distribution function (NDF)as the
primary determinant of a BRDF’s shape. An alternative method is
based on approximating the micron-resolution surface wave effects
using Gabor kernels(products of Gaussians with complex exponen-
tials). In section 4, we will first discuss wave optics theory. Section 5
describes microfacet theory. section 6 will introduce efficient BRDF
evaluation using Gabor kernels. Section 7 touches on the derivation
of heightfield from BRDF.

Diffraction BRDF model 𝜉1 𝜉2 𝜉3

Kirchhoff |ψ ·𝑛 |2𝐹
4𝜆2 |𝜔𝑖 ·𝑛 | |𝜔𝑜 ·𝑛 | 1 −

¯ψ ·𝐻 ′ (𝑠)
ψ ·𝑛 ψ · 𝑛

Table 1. List of symbols

Fig. 1. Heightfield surface and BRDF directions example.
[2014]

4 WAVE BRDF THOERY
In wave optics, light is considered as wave that satisfy certain
boundary conditions and governing differential equations. Each
wavelength (denoted as 𝜆) is considered individually and encoded
by magnitude and phase using complex-valued fields. The local
light energy is characterized as squared magnitude of the field as
that point. Certain scalar diffraction models, including Kirchhoff
theory, can be used to estimate the reflected field from a rough
surface. Unlike geometry optics, wave optics can result in charac-
teristic diffraction effects, attributing from non-linear sum due to
interference effects. [2014]

Given a surface heightfield 𝐻 (𝑠)(seen Table 1) for a 2D point,
𝑠 = [𝑠𝑥 , 𝑠𝑦], we have a corresponding 3D point on the rough surface
denoted as [𝑠𝑥 , 𝑠𝑦, 𝐻 (𝑠)]. Here, we are discretizing heightfield into
texel of 1𝜇𝑚 resolution, and our goal is to estimate the BRDF with
these height information. Due to difference in local surface height,
light reflecting from different parts of the surface will travel different
distances. This causes phase shifts in reflected waves which can be
described as interference to determine the BRDF.

These phase shifts can be approximated using a planar surface
that reflects light with spatially-varying phase shift, specified by its
reflection function[2014]:

𝑅(𝑠) = 𝜉2𝑒
−𝑖 2𝜋

𝜆
𝜉3𝐻 (𝑠) (1)

A typical diffraction models we use is Kirchhoff model with values
of 𝜉2 and 𝜉3 specified in Table 2. Here, we represent directions 𝜔𝑖

and 𝜔𝑜 as 3D unit vectors. Let ψ = 𝜔𝑖 + 𝜔𝑜 and ψ̄ be its 2D pro-
jection on XY plane as seen in Table 2. The BRDF of this planar
representation can be computed using a surface integral of the form:

𝑓𝑟 (𝜔𝑖 , 𝜔𝑜 ) =
𝜉1
𝐴𝑆

|
∫
𝑆

𝑅(𝑠)𝑒−𝑖
2𝜋
𝜆
(ψ̄ ·𝑠)𝑑𝑠 |2 (2)

where 𝑆 is the domain of the heightfield,𝐴𝑆 is its area, and 𝜉𝑖 depends
on the chosen BRDF model.

4.1 Coherence area
Kirchhoff diffraction model simulates incident lights as coherent
light wave, but in reality, the light sources from real scenes are
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i Imaginary unit for complex numbers,
𝜆 Wavelength of light
n Average surface normal(equal to z axis)
𝑠 2D point(on the XY plane)
𝐻 (𝑠) Height of surface above s
𝑆 domain of height function
𝐴𝑠 Area of 𝑆
𝜔𝑖 Direction of incident light (3D unit vector)
𝜔𝑜 Direction of reflected light (3D unit vector)
ψ ψ = 𝜔𝑖 + 𝜔𝑜

ψ̄ 2D projection of ψ on XY plane
𝑓𝑥 Bidirectional refelctance distribution function (BRDF)
𝐹 surface reflectance
𝜉1, 𝜉2, 𝜉3 see Figure 2

Table 2. List of symbols

much more complicated, so an infinite coherence area as shown
in equation 2 is impractical. Thus, we define the spatial area over
which the phase of light remains coherent is called the coherence
area. This areas is usually inversely correlated to the solid angle.
For a simple uniform source, the coherence area is approximately
given by𝐴𝑐 ≈ 𝜆2/Ω𝑙 , where Ω𝑙 is the solid angle subtended by light
source in steradians [Mandel and Wolf 1995]. To account for the
effect of coherence area, we spatially limit the surface integral using
coherence kernels𝑤 (𝑠), and then take an average of the resulting
BRDF over the region of interest. The principle effect of limiting the
coherence area is the blurring of the BRDF. The BRDF estimation
over one coherence area now becomes

𝑓𝑟 (𝜔𝑖 , 𝜔𝑜 ) =
𝜉1
𝐴𝑐

|
∫
𝑆𝑐

𝑅∗ (𝑠)𝑒−𝑖
2𝜋
𝜆
(ψ̄ ·𝑠)𝑑𝑠 |2 (3)

𝑅∗ (𝑠) = 𝑤 (𝑠 − 𝑥𝑐 )𝑅(𝑠) (4)
where 𝑆𝑐 is the portion of 𝑆 within the support of the coherence
kernel centered at 𝑥𝑐 , the corresponding normalization factor is
𝐴𝑐 =

∫
|𝑤 (𝑠) |2𝑑𝑠 , and 𝑅∗ is the product of 𝑅(𝑠) and the coherence

kernel.[2014]. Generally, the actual coherence area depends of the
details of the lighting configuration which is unknown in advance,
so we can’t predict the exact coherence area. Although overestima-
tion and underestimation can cause problems such as high angular
frequency aliasing and over-blurring of the BRDF, we can resolve
this by capturing more light samples.

To simplify rendering procedure, we applied a fixed size coher-
ence area over the entire region and use a Gaussian with standard
deviations of 10 microns for𝑤 [Werner et al. 2017].

5 MICROFACET THEORY
Microfacet theory considers a surface as a collection of tiny flat
mirror facets, that obey geometric optics. At each point, the sur-
face reflects incident light to their corresponding mirror direction
based on the local surface normal. So light coming from incident
direction 𝜔𝑖 will only be reflected to out direction 𝜔𝑜 by facets on
the surface whose normals are equal to ψ. The area density with

a given local normal is describedby the surface’s normal distribu-
tion function(NDF) [2014]. The BRDF function corresponding to the
microfacet model is given by

𝑓𝑟 (𝜔𝑖 , 𝜔𝑜 ) =
𝐷𝑀 (ψ)𝐹 (𝜔𝑖 , ψ)𝐺 (𝜔𝑖 , 𝜔𝑜 )

4|𝜔𝑖 · 𝑛 | |𝜔𝑜 · 𝑛 | (5)

where 𝐷𝑀 is the surface’s normal distribution function, F is the
Fresnel term, G is a shadowing-masking term, and 𝑛 is the average
of the normal. [2014]. The Fresnel term is determined by the mate-
rial type and can be computed based on its reflectance index and
extinction coefficients. The shadow-masking term is used for energy
conservation and is typically close to one. So the most important
function is the normal distribution function.

Traditional Microfacet theory neglects wave effects including
diffraction, so it can’t accurately capture the roughness at scales near
the wavelength of light. To simulate BRDF results, [2014] devised a
filtered geometric NDF estimation. A surface’s normal distribution
function (NDF) is a density function over the sphere of directions
that is proportional to the surface area with a given surface normal
𝑚 [2014]. The NDF can be defined geometrically as

𝐷𝑀 (𝑚) = 𝑙𝑖𝑚
|𝜔𝑚 |→0

𝐴(Ω𝑚)
|Ω𝑚 |𝐴⊥

𝑆

, (6)

where Ω𝑚 is a solid angle containing the direction𝑚, 𝐴(Ω𝑚) is the
area of surfaces whose normals are inside Ω𝑚 , and 𝐴⊥

𝑆
is the total

projected surface area in the direction of the large scale surface
normal 𝑛.
To account for the effects of wave optics which surface details

below wavelength-scale has much reduced influence on BRDF. We
propose a modified NDF estimation that uses a Gaussian filter to
reduce the influence of small scale features.

6 EFFICIENT BRDF EVALUATION
In this section, we would discuss approaches to efficiently evaluate
the BRDF integrals for our wave optics diffraction models. One
ideas is to approximate the phase-delay reflection function 𝑅∗ (𝑠)
by a weighted combination of Gabor kernels, which are products
of a 2D Gaussian with a complex exponential (plane wave). These
kernels contain desirable properties that represents high frequency
features seen in 𝑅∗ (𝑠)

6.1 Gabor kernels
We define a Gabor kernel as the product of a 2D Gaussian and a
complex exponential:

𝑔(𝑠; 𝜇;𝜎, 𝑎) = 𝐺2𝐷 (𝑠; 𝜇, )𝑒−𝑖2𝜋 (𝑎 ·𝑠) (7)

where 𝐺2𝐷 (𝑠 ; 𝜇, 𝜎) = 1
2𝜋𝜎2 𝑒𝑥𝑜 (−

∥𝑠−𝜇 ∥2

2𝜎2 ) is a normalized 2D Gauss-
ian isotropic[Yan et al. 2014]. 𝜇 is the center, 𝜎 the width, and 𝑎 the
plane wave parameter.

6.2 Approximating R with Gabor kernels
Here, we adapted our approximation algorithm fromYan et al.[2014].We
first subdivide our height field domain 𝑆 into uniform grid of cells.
The size of these cells should match the original height field texels.
Next, we select a set of cells, whose centers are located at𝑚𝑘 that
covers the current coherence kernel we are integrating over. We

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: November 2020.
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treat the coherence kernel over a cell as constant with value of
𝑤𝑘 = 𝑤 (𝑚𝑘 − 𝑥𝑐 )[2014] since the area of the cell is much smaller
than that of the coherence area. Then we place a Gabor kernel cen-
tered in each of the grid to approximate reflection function 𝑅(𝑠)
in its neighbor, and this provides us with an approximation of the
𝑅∗ (𝑠) expressed as :

𝑅∗ (𝑠) ≈
∑
𝑘

𝑤𝑘𝑅𝑘 (𝑠) =
∑
𝑘

𝑤𝑘𝐶𝑘𝑔(𝑠;𝑚𝑘 , 𝜎𝑘 , 𝑎𝑘 ) (8)

, where 𝐶𝑘 is a complex constant, incorporating an appropriate
scaling coefficient that incorporates both an appropriate scaling
coefficient and phase shift.

We then approximate the heightfield 𝐻 (𝑠) in each cell using
first order expansion of𝑚𝑘 which results :

𝐻 (𝑠) ≈ 𝐻 (𝑚𝑘 ) + 𝐻 ′(𝑚𝑘 ) · (𝑠 −𝑚𝑘 ) (9)

= 𝐻 ′(𝑚𝑘 ) · 𝑠 + (𝐻 (𝑚𝑘 ) − 𝐻 ′(𝑚𝑘 ) ·𝑚𝑘 ) (10)
where𝐻 ′(𝑚𝑘 ) is the gradient of the heightfield at𝑚𝑘 . [2014]. Given
this approximation, we now substitute this equation back to our
original definition of 𝑅(𝑠) in equation 1, which we approximate the
contribution of a single cell as

𝑅𝑘 (𝑠) = 𝐵2𝐷 (𝑠;𝑚𝑘 , 𝑙𝑘 )𝜉2𝑒
− 𝑖2𝜋𝜉3

𝜆
𝐻 (𝑠) (11)

≈ 𝑙2
𝑘
𝐺2𝐷 (𝑠; 𝜇𝑘 , 𝜎𝑘 )𝜉2𝑒

− 𝑖2𝜋𝜉3
𝜆

(𝛼𝑘+𝐻 ′ (𝑚𝑘 ) ·𝑠) (12)
where 𝛼𝑘 = 𝐻 (𝑚𝑘 ) − 𝐻 ′(𝑚𝑘 ) ·𝑚𝑘 as the result of first order ap-
proximation. 𝐵2𝐷 is a binary box function inferring the domain of
the grid cell, which integrates to the cell’s area 𝑙2

𝑘
. Subsequently, we

replace this box function with a 2D Gaussian function covering the
same area. Lastly, by comparing the result from equation 12 to that
of equation 8, we have

𝐶𝑘 = 𝑙2
𝑘
𝜉2𝑒

− 𝑖2𝜋𝜉3
𝜆

(𝐻 (𝑚𝑘 )−𝐻 ′ (𝑚𝑘 ·𝑚𝑘 ) (13)

𝑎𝑘 =
𝜉3𝐻 ′(𝑚𝑘 )

𝜆
(14)

6.3 BRDF Approximation
Lastly, we can use the Gabor kernel approximation derived earlier
to evaluate the BRDF. Using equation 5, we get

𝑓𝑟 (𝜔𝑖 , 𝜔𝑜 ) =
𝜉1
𝐴𝑐

|
∑
𝑘

𝑤𝑘𝐶𝑘F [𝑔(𝑠;𝑚𝑙 , 𝜎𝑘 , 𝑎𝑘 )] (
ψ̄

𝜆
) |2 (15)

,where the fourier transform is defined as

F [𝑓 ] (𝑣) ≡
∫
R2

𝑓 (𝑠)𝑒−𝑖2𝜋 (𝑠 ·𝑣)𝑑𝑠 (16)

7 FROM BRDF TO HEIGHTFIELD

7.1 BRDF to Microfacet Distribution
In order to form a close loop, we now seek for the inverse process,

namely converting BRDFs to heightfields. Here, we adopt method
presented by Weyrich et al.[2009] and introduce fabrication of mi-
crogeometry using a milling machine. Note that the derivation is
different depending on the fabrication process we are using. For
instance, photolithography prefers surfaces which are composed
of a small number of piece-wise flat layers, while milling prefers
continuous depth surface.[Levin et al. 2013; Weyrich et al. 2009]

We first represent BRDF as half-angle distribution, then we convert
this distribution into the desired normal distribution function, by
accounting the base BRDF. The effect of BRDF can be treated as a
convolution. Removing the effect involves solving a deconvolution
problem. Here, we use the iterative Lucy-Richardson deconvolution
algorithm

7.2 Microfacet Distribution to Height Field
In principle, there may exist an infinite possibility of height field
that produces the same microfacet distribution, but not every distri-
bution describes a continuous tileable surface and can be fabricated.
To constraint the problem, we need to satisfy the following con-
straint, which by rotating the microfacet distribution, its mean is
perpendicular to the surface. Given this precondition, we devise a
sampling method and optimization scheme to maximize tileability,
and minimize discontinuities. Lastly, we solve for the optimal height
of each facet.

Sampling A possible sampling method is to apply importance
sampling. Since the order of the microfacets does not impact the dis-
tribution, using low-discrepancy sampling techniques will achieve
great-fidelity while maintaining a low noise level. Since we have
no direct control of the "brightness" over the microfacet distribu-
tion(light is reflected based onthe base BRDF which we eliminated
in the previous step), we employ a centroidal Voronoi tessellation
technique to place the sample proportional to the local density,
while maintaining a good global distribution of the samples [2009].

Optimization Given the desired sets of microfacets we sample,
we need to optimize our tiles to meet the necessary preconditions:
a smooth, manufacturable surface. Here, we formulate this min-
imization problem as a combination of three heuristical energy
functions. The first energy function 𝐶 = 𝐶𝑥 +𝐶𝑦 , penalizes slope
incompatibility between adjacent facets in x and y direction:

𝐶𝑥 =
1
4

∑
𝑦

∑
𝑥

∥𝑑𝑧 (𝑥 + 1, 𝑦) − 𝑑𝑧 (𝑥,𝑦)
𝑑𝑦

∥2 (17)

and 𝐶𝑦 analogously.[2009]. This equation enforces neighboring
facets have a similar slope along their common edges. Next, we
enforce integrability along rows and columns by minimizing the
second energy function 𝐼 = 𝐼𝑥 + 𝐼𝑦 , ensuring that in a cyclic arrange-
ment, the derivatives along each row or column sum to zero

𝐼𝑥 =
∑
𝑦

∥
∑
𝑥

𝑑𝑧 (𝑥 + 1, 𝑦) − 𝑑𝑧 (𝑥,𝑦)
𝑑𝑥

∥2 (18)

,and 𝐼𝑦 analogously [2009]. Lastly, since we are using milling ma-
chine, we need to account for the shape of milling bits. For instance,
we cannot manufacture arbitrary concave shape since such a shape
would introduces erroneous angles of reflection. To reduce this prob-
lem, we introduce the last term𝑉 = 𝑉𝑥 +𝑉𝑦 adds a constant penalty
when two neighboring facets form a concave slope

𝑉𝑥 = 𝑤𝑣 | (𝑥,𝑦) |
𝑑𝑧 (𝑥 + 1, 𝑦)

𝑑𝑥
>

𝑑𝑧 (𝑥,𝑦)
𝑑𝑥

| (19)

and 𝑉𝑦 analogously, with𝑤𝑣 as a weighting term depending on the
relative influence of concavity compared to other penalty functions
[2009].
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Integration Provided with the optimal 2D arrangement of the
microfacets using the previous optimizations, we seek to optimize
for maximal continuity in height field by shifting each facet along
𝑧 direction to their optimal heights. We describe this problem as a
discrete Possion equation

∇2𝑧 = div𝑔 (20)

, with a gradient field 𝑔 = (𝑔𝑥 , 𝑔𝑦) and the condition for seamless
facet connectivity in the direction being

𝑔𝑥 (𝑥,𝑦) =
1
4
𝑑𝑧 (𝑥 − 1, 𝑦)

𝑑𝑥
+ 1

2
𝑑𝑧 (𝑥,𝑦)

𝑑𝑥
+ 1

4
𝑑𝑧 (𝑥 + 1, 𝑦)

𝑑𝑥
(21)

and 𝑔𝑦 analogously. As we aim a tileable arrangement given a cyclic
system, a Dirichlet boundary condition at a single point suffice to
solve the equation.

8 RESULTS AND DISCUSSIONS
We adapted implementation of Gabor kernel solution from Yan et
al.[2014], and tested on simulated isotropic and scratched height
fields as well as height fields of aluminum captured using profilome-
ter provided by zhao et al [2014]. The results we acquired from the
isotropic and scratched heightfields are shown in Figure 2. As for
the aluminum surface heightfields, we stitched several patches from
the measured data to form an image of size 1024x1024 pixels, and
ran the BRDF integration at a wavelength of 0.11 microns, similar to
the size of each texel as reported by zhao et al [2014]. However, the
derivation we received does not seem reasonable. On the other hand,
we derived the NDF for Aluminum 4, copper 4, and Qpanel which
is a steel plate with an isotropic rough finish using heightfields data
from zhao et al [2014] and Kirchhoff diffraction model as shown
in figure 3. Due to the time constraint, we didn’t get to the other
direction of the closed loop: fabricating microgeometry from BRDF.
In the future, we would like to derive a heightfields and potentially
manufacture these heightfields distribution using various methods
such as photolithography and milling.

8.1 Conclusions
In this report, we presented ideas and methods to form a closed
loop between heightfields and BRDFs using wave optics. We dis-
cussed derivation of BRDFs with measured heightfields in micron
scale using either Gabor kernel or microfacet theory. In addition,
we discussed methods for fabricating microgeometry from BRDFs,
specifically using milling. In results, we showed the BRDF results
with simulated isotropic and scratched heightfields, but couldn’t
get the results for real measurements. Alternatively, we presented
the NDF results using Kirchhoff diffraction model for Aluminum 4,
Copper 4, and Qpanel. We didn’t obtain results of microgeometry
from BRDF due to the time constraints, but we hope to achieve this
in the future.
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